2,437 research outputs found

    Sugawara-type constraints in hyperbolic coset models

    Full text link
    In the conjectured correspondence between supergravity and geodesic models on infinite-dimensional hyperbolic coset spaces, and E10/K(E10) in particular, the constraints play a central role. We present a Sugawara-type construction in terms of the E10 Noether charges that extends these constraints infinitely into the hyperbolic algebra, in contrast to the truncated expressions obtained in arXiv:0709.2691 that involved only finitely many generators. Our extended constraints are associated to an infinite set of roots which are all imaginary, and in fact fill the closed past light-cone of the Lorentzian root lattice. The construction makes crucial use of the E10 Weyl group and of the fact that the E10 model contains both D=11 supergravity and D=10 IIB supergravity. Our extended constraints appear to unite in a remarkable manner the different canonical constraints of these two theories. This construction may also shed new light on the issue of `open constraint algebras' in traditional canonical approaches to gravity.Comment: 49 page

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    Gradient Representations and Affine Structures in AE(n)

    Full text link
    We study the indefinite Kac-Moody algebras AE(n), arising in the reduction of Einstein's theory from (n+1) space-time dimensions to one (time) dimension, and their distinguished maximal regular subalgebras sl(n) and affine A_{n-2}^{(1)}. The interplay between these two subalgebras is used, for n=3, to determine the commutation relations of the `gradient generators' within AE(3). The low level truncation of the geodesic sigma-model over the coset space AE(n)/K(AE(n)) is shown to map to a suitably truncated version of the SL(n)/SO(n) non-linear sigma-model resulting from the reduction Einstein's equations in (n+1) dimensions to (1+1) dimensions. A further truncation to diagonal solutions can be exploited to define a one-to-one correspondence between such solutions, and null geodesic trajectories on the infinite-dimensional coset space H/K(H), where H is the (extended) Heisenberg group, and K(H) its maximal compact subgroup. We clarify the relation between H and the corresponding subgroup of the Geroch group.Comment: 43 page

    Curvature corrections and Kac-Moody compatibility conditions

    Get PDF
    We study possible restrictions on the structure of curvature corrections to gravitational theories in the context of their corresponding Kac--Moody algebras, following the initial work on E10 in Class. Quant. Grav. 22 (2005) 2849. We first emphasize that the leading quantum corrections of M-theory can be naturally interpreted in terms of (non-gravity) fundamental weights of E10. We then heuristically explore the extent to which this remark can be generalized to all over-extended algebras by determining which curvature corrections are compatible with their weight structure, and by comparing these curvature terms with known results on the quantum corrections for the corresponding gravitational theories.Comment: 27 page

    A dynamical inconsistency of Horava gravity

    Full text link
    The dynamical consistency of the non-projectable version of Horava gravity is investigated by focusing on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse must vanish asymptotically. We then consider particular values of the coupling constants for which the equations are tractable and in that case we prove that the lapse must vanish everywhere -- and not only at infinity. Put differently, the Hamiltonian constraints are generically all second-class. We then argue that the same feature holds for generic values of the couplings, thus revealing a physical inconsistency of the theory. In order to cure this pathology, one might want to introduce further constraints but the resulting theory would then lose much of the appeal of the original proposal by Horava. We also show that there is no contradiction with the time reparametrization invariance of the action, as this invariance is shown to be a so-called "trivial gauge symmetry" in Horava gravity, hence with no associated first-class constraints.Comment: 28 pages, 2 references adde

    The gauge structure of generalised diffeomorphisms

    No full text
    We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters

    E11 and Spheric Vacuum Solutions of Eleven- and Ten dimensional Supergravity Theories

    Full text link
    In view of the newly conjectured Kac-Moody symmetries of supergravity theories placed in eleven and ten dimensions, the relation between these symmetry groups and possible compactifications are examined. In particular, we identify the relevant group cosets that parametrise the vacuum solutions of AdS x S type.Comment: discussion improve

    E_{11} origin of Brane charges and U-duality multiplets

    Full text link
    We derive general equations which determine the decomposition of the G^{+++} multiplet of brane charges into the sub-algebras that arise when the non-linearly realised G^{+++} theory is dimensionally reduced on a torus. We apply this to calculate the low level E_8 multiplets of brane charges that arise when the E_{8}^{+++}, or E_{11}, non-linearly realised theory is dimensionally reduced to three dimensions on an eight dimensional torus. We find precise agreement with the U-duality multiplet of brane charges previously calculated, thus providing a natural eleven dimensional origin for the "mysterious" brane charges found that do not occur as central charges in the supersymmetry algebra. We also discuss the brane charges in nine dimensions and how they arise from the IIA and IIB theories.Comment: 30 pages, plain te

    Expanded binding specificity of the human histone chaperone NASP

    Get PDF
    NASP (nuclear autoantigenic sperm protein) has been reported to be an H1-specific histone chaperone. However, NASP shares a high degree of sequence similarity with the N1/N2 family of proteins, whose members are H3/H4-specific histone chaperones. To resolve this paradox, we have performed a detailed and quantitative analysis of the binding specificity of human NASP. Our results confirm that NASP can interact with histone H1 and that this interaction occurs with high affinity. In addition, multiple in vitro and in vivo experiments, including native gel electrophoresis, traditional and affinity chromatography assays and surface plasmon resonance, all indicate that NASP also forms distinct, high specificity complexes with histones H3 and H4. The interaction between NASP and histones H3 and H4 is functional as NASP is active in in vitro chromatin assembly assays using histone substrates depleted of H1
    • …
    corecore